当前位置:育儿知识大全 早教内容页

递增数列求和公式请给出具体公式,

递增数列是指从第二项起,每一项都大于它的前一项的数列。递增数列有很多种,不同类型的递增数列求和公式不同,以下列举一些常见的:

等差数列

如果递增数列是等差数列,即后一项与前一项的差值为固定值(公差d>0d>0 ),其首项为a1a_1,末项为ana_n,项数为nn,公差为dd,则求和公式有两种表达形式:

Sn=n(a1+an)2S_n = \frac{n(a_1 + a_n)}{2}

Sn=na1+n(n1)2dS_n = na_1 + \frac{n(n - 1)}{2}d

推导过程:

对于Sn=n(a1+an)2S_n = \frac{n(a_1 + a_n)}{2}

设等差数列{an}\{ a_n\}Sn=a1+a2+a3++anS_n = a_1 + a_2 + a_3 + \cdots + a_n

把顺序倒过来写可得Sn=an+an1+an2++a1S_n = a_n + a_{n - 1} + a_{n - 2} + \cdots + a_1

① + ②得2Sn=(a1+an)+(a2+an1)+(a3+an2)++(an+a1)2S_n = (a_1 + a_n) + (a_2 + a_{n - 1}) + (a_3 + a_{n - 2}) + \cdots + (a_n + a_1)

因为在等差数列中有a1+an=a2+an1=a3+an2=a_1 + a_n = a_2 + a_{n - 1} = a_3 + a_{n - 2} = \cdots ,一共有nn组这样的和,所以2Sn=n(a1+an)2S_n = n(a_1 + a_n),即Sn=n(a1+an)2S_n = \frac{n(a_1 + a_n)}{2}

 

对于Sn=na1+n(n1)2dS_n = na_1 + \frac{n(n - 1)}{2}d

由于等差数列通项公式an=a1+(n1)da_n = a_1 + (n - 1)d,将其代入Sn=n(a1+an)2S_n = \frac{n(a_1 + a_n)}{2} 中,可得Sn=n[a1+a1+(n1)d]2S_n = \frac{n\left[a_1 + a_1 + (n - 1)d\right]}{2}

化简后得到Sn=na1+n(n1)2dS_n = na_1 + \frac{n(n - 1)}{2}d

 

等比数列

若递增数列是等比数列,即后一项与前一项的比值为固定值(公比q>1q > 1 ),首项为a1a_1,公比为qq,项数为nn,其求和公式为:
Sn={a1(1qn)1q(q1)na1(q=1) S_n = \begin{cases} \frac{a_1(1 - q^n)}{1 - q} & (q \neq 1) \\ na_1 & (q = 1) \end{cases}

推导过程:

设等比数列{an}\{ a_n\}Sn=a1+a2+a3++anS_n = a_1 + a_2 + a_3 + \cdots + a_n ,即Sn=a1+a1q+a1q2++a1qn1S_n = a_1 + a_1q + a_1q^2 + \cdots + a_1q^{n - 1}

两边同乘以公比qqqSn=a1q+a1q2+a1q3++a1qnqS_n = a_1q + a_1q^2 + a_1q^3 + \cdots + a_1q^n

① - ②得:SnqSn=a1a1qnS_n - qS_n = a_1 - a_1q^n ,即Sn(1q)=a1(1qn)S_n(1 - q) = a_1(1 - q^n)

q1q \neq 1时,Sn=a1(1qn)1qS_n = \frac{a_1(1 - q^n)}{1 - q} ;当q=1q = 1时,数列每一项都相等,Sn=na1S_n = na_1

例如,对于等差数列1,3,5,7,91, 3, 5, 7, 9a1=1a_1 = 1d=2d = 2n=5n = 5

Sn=n(a1+an)2S_n = \frac{n(a_1 + a_n)}{2} :先求a5=a1+(51)d=1+4×2=9a_5 = a_1 + (5 - 1)d = 1 + 4\times2 = 9 ,则S5=5×(1+9)2=25S_5 = \frac{5\times(1 + 9)}{2} = 25

Sn=na1+n(n1)2dS_n = na_1 + \frac{n(n - 1)}{2}dS5=5×1+5×(51)2×2=5+20=25S_5 = 5\times1 + \frac{5\times(5 - 1)}{2}\times2 = 5 + 20 = 25

对于等比数列2,4,8,162, 4, 8, 16a1=2a_1 = 2q=2q = 2n=4n = 4S4=2×(124)12=2321=30S_4 = \frac{2\times(1 - 2^4)}{1 - 2} = \frac{2 - 32}{-1} = 30