当前位置:育儿知识大全 早教内容页

基本积分表共24个公式

在微积分中,基本积分表是非常重要的工具,以下为你列举常见的 24 个基本积分公式:

kdx=kx+C\int kdx = kx + Ckk 为常数)

xμdx=xμ+1μ+1+C(μ1)\int x^{\mu}dx = \frac{x^{\mu + 1}}{\mu + 1} + C (\mu \neq - 1)

1xdx=lnx+C\int \frac{1}{x}dx = \ln |x| + C

axdx=axlna+C(a>0,a1)\int a^{x}dx = \frac{a^{x}}{\ln a} + C (a > 0,a \neq 1)

exdx=ex+C\int e^{x}dx = e^{x} + C

sinxdx=cosx+C\int \sin xdx = - \cos x + C

cosxdx=sinx+C\int \cos xdx = \sin x + C

sec2xdx=tanx+C\int \sec ^{2}xdx = \tan x + C

csc2xdx=cotx+C\int \csc ^{2}xdx = - \cot x + C

secxtanxdx=secx+C\int \sec x\tan xdx = \sec x + C

cscxcotxdx=cscx+C\int \csc x\cot xdx = - \csc x + C

11x2dx=arcsinx+C=arccosx+C1\int \frac{1}{\sqrt{1 - x^{2}}}dx = \arcsin x + C = - \arccos x + C_1

1dx=arcsinx+C=arccosx+C1

11+x2dx=arctanx+C=arccotx+C1\int \frac{1}{1 + x^{2}}dx = \arctan x + C = - \text{arccot}x + C_1

tanxdx=lncosx+C\int \tan xdx = - \ln|\cos x| + C

cotxdx=lnsinx+C\int \cot xdx = \ln|\sin x| + C

secxdx=lnsecx+tanx+C\int \sec xdx = \ln|\sec x + \tan x| + C

cscxdx=lncscxcotx+C\int \csc xdx = \ln|\csc x - \cot x| + C

1x2a2dx=12alnxax+a+C\int \frac{1}{x^{2} - a^{2}}dx = \frac{1}{2a}\ln|\frac{x - a}{x + a}| + C

1a2x2dx=12alna+xax+C\int \frac{1}{a^{2} - x^{2}}dx = \frac{1}{2a}\ln|\frac{a + x}{a - x}| + C

1x2+a2dx=ln(x+x2+a2)+C\int \frac{1}{\sqrt{x^{2} + a^{2}}}dx = \ln(x + \sqrt{x^{2} + a^{2}}) + C

1dx=ln(x+x2+a2

)+C

1x2a2dx=lnx+x2a2+C\int \frac{1}{\sqrt{x^{2} - a^{2}}}dx = \ln|x + \sqrt{x^{2} - a^{2}}| + C

1dx=lnx+x2a2

+C

a2x2dx=x2a2x2+a22arcsinxa+C\int \sqrt{a^{2} - x^{2}}dx = \frac{x}{2}\sqrt{a^{2} - x^{2}} + \frac{a^{2}}{2}\arcsin\frac{x}{a} + C

dx=2xa2x2

+2a2arcsinax+C

x2+a2dx=x2x2+a2+a22ln(x+x2+a2)+C\int \sqrt{x^{2} + a^{2}}dx = \frac{x}{2}\sqrt{x^{2} + a^{2}} + \frac{a^{2}}{2}\ln(x + \sqrt{x^{2} + a^{2}}) + C

dx=2xx2+a2

+2a2ln(x+x2+a2

)+C

x2a2dx=x2x2a2a22lnx+x2a2+C\int \sqrt{x^{2} - a^{2}}dx = \frac{x}{2}\sqrt{x^{2} - a^{2}} - \frac{a^{2}}{2}\ln|x + \sqrt{x^{2} - a^{2}}| + C

dx=2xx2a2

2a2lnx+x2a2

+C

这些公式是积分运算的基础,在求解各种积分问题时经常会用到。