当前位置:育儿知识大全 早教内容页

求所有的和差化积公式和奇化和差公式.

和差化积公式

sinα+sinβ=2sinα+β2cosαβ2\sin\alpha+\sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

推导思路

x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2},则α=x+y\alpha=x + yβ=xy\beta=x - y

sinα+sinβ=sin(x+y)+sin(xy)\sin\alpha+\sin\beta=\sin(x + y)+\sin(x - y)

根据两角和与差的正弦公式sin(A+B)=sinAcosB+cosAsinB\sin(A + B)=\sin A\cos B+\cos A\sin Bsin(AB)=sinAcosBcosAsinB\sin(A - B)=\sin A\cos B-\cos A\sin B,可得sin(x+y)+sin(xy)=(sinxcosy+cosxsiny)+(sinxcosycosxsiny)=2sinxcosy\sin(x + y)+\sin(x - y)=(\sin x\cos y+\cos x\sin y)+(\sin x\cos y-\cos x\sin y)=2\sin x\cos y

再把x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2}代回,就得到sinα+sinβ=2sinα+β2cosαβ2\sin\alpha+\sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

 

 

sinαsinβ=2cosα+β2sinαβ2\sin\alpha-\sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

推导思路

同样令x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2},则α=x+y\alpha=x + yβ=xy\beta=x - y

sinαsinβ=sin(x+y)sin(xy)\sin\alpha-\sin\beta=\sin(x + y)-\sin(x - y)

由两角和与差的正弦公式可得sin(x+y)sin(xy)=(sinxcosy+cosxsiny)(sinxcosycosxsiny)=2cosxsiny\sin(x + y)-\sin(x - y)=(\sin x\cos y+\cos x\sin y)-(\sin x\cos y-\cos x\sin y)=2\cos x\sin y

代回x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2},即sinαsinβ=2cosα+β2sinαβ2\sin\alpha-\sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

 

 

cosα+cosβ=2cosα+β2cosαβ2\cos\alpha+\cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

推导思路

x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2}α=x+y\alpha=x + yβ=xy\beta=x - y

cosα+cosβ=cos(x+y)+cos(xy)\cos\alpha+\cos\beta=\cos(x + y)+\cos(x - y)

根据两角和与差的余弦公式cos(A+B)=cosAcosBsinAsinB\cos(A + B)=\cos A\cos B-\sin A\sin Bcos(AB)=cosAcosB+sinAsinB\cos(A - B)=\cos A\cos B+\sin A\sin B,则cos(x+y)+cos(xy)=(cosxcosysinxsiny)+(cosxcosy+sinxsiny)=2cosxcosy\cos(x + y)+\cos(x - y)=(\cos x\cos y-\sin x\sin y)+(\cos x\cos y+\sin x\sin y)=2\cos x\cos y

代回x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2},得到cosα+cosβ=2cosα+β2cosαβ2\cos\alpha+\cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

 

 

cosαcosβ=2sinα+β2sinαβ2\cos\alpha-\cos\beta=-2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

推导思路

x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2}α=x+y\alpha=x + yβ=xy\beta=x - y

cosαcosβ=cos(x+y)cos(xy)\cos\alpha-\cos\beta=\cos(x + y)-\cos(x - y)

由两角和与差的余弦公式可得cos(x+y)cos(xy)=(cosxcosysinxsiny)(cosxcosy+sinxsiny)=2sinxsiny\cos(x + y)-\cos(x - y)=(\cos x\cos y-\sin x\sin y)-(\cos x\cos y+\sin x\sin y)= - 2\sin x\sin y

代回x=α+β2x=\frac{\alpha + \beta}{2}y=αβ2y=\frac{\alpha - \beta}{2},即cosαcosβ=2sinα+β2sinαβ2\cos\alpha-\cos\beta=-2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

 

 

积化和差公式

sinαcosβ=12[sin(α+β)+sin(αβ)]\sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha + \beta)+\sin(\alpha - \beta)]

推导思路

已知sin(A+B)=sinAcosB+cosAsinB\sin(A + B)=\sin A\cos B+\cos A\sin Bsin(AB)=sinAcosBcosAsinB\sin(A - B)=\sin A\cos B-\cos A\sin B

将两式相加得:sin(A+B)+sin(AB)=2sinAcosB\sin(A + B)+\sin(A - B)=2\sin A\cos B

两边同时除以2,令A=αA=\alphaB=βB = \beta,就得到sinαcosβ=12[sin(α+β)+sin(αβ)]\sin\alpha\cos\beta=\frac{1}{2}[\sin(\alpha + \beta)+\sin(\alpha - \beta)]

 

 

cosαsinβ=12[sin(α+β)sin(αβ)]\cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha + \beta)-\sin(\alpha - \beta)]

推导思路

sin(A+B)=sinAcosB+cosAsinB\sin(A + B)=\sin A\cos B+\cos A\sin Bsin(AB)=sinAcosBcosAsinB\sin(A - B)=\sin A\cos B-\cos A\sin B

sin(A+B)sin(AB)\sin(A + B)-\sin(A - B)可得:sin(A+B)sin(AB)=2cosAsinB\sin(A + B)-\sin(A - B)=2\cos A\sin B

两边同时除以2,令A=αA=\alphaB=βB = \beta,即\(\cos\alpha\sin\beta=\frac{1}{2}[\sin(\alpha + \beta